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1. Introduction 

A common problem faced by an experimenter is one of comparing several populations 

(processes, treatments). These may be, for example, different varieties of a grain or dif- 

ferent drugs for a specific disease. In other words, we have A;(> 2) populations and each 

population is characterized by the value of a parameter of interest, say, 6, which may be, in 

the example of drugs, an appropriate measure of the effectiveness of a drug. The classical 

approach to this problem is to test the homogeneity hypothesis HQ : Oi — 62 = • • ■ = 6k, 

where 61,. ..,0k are the values of the parameter for these populations. However, the clas- 

sical tests of homogeneity are inadequate in the sense that they do not answer a frequently 

encountered experimenter's question, namely, how to identify the "best" population or 

how to select the more promising (worthwhile) subset of the populations for further ex- 

perimentation. 

The formulation of a A;-sample problem as a multiple decision problem enables the 

experimenter to answer questions regarding the selection of the best or a subset containing 

the best population. The formulation of multiple decision procedure in the framework of 

selection and ranking procedures has been accomplished generally using either the indiffer- 

ence zone approach or the subset selection approach. The former approach was introduced 

by Bechhofer (1954). Substantial contribution to the early and subsequent developments 

in the subset selection theory has been made by Gupta (1956, 1965). A discussion of their 

diflFerences and various modifications that have taken place since then can be found in 

Gupta and Panchapakesan (1979). 

In many situations, an experimenter may have some prior information about the pa- 

rameters of interest, and he would like to use this information to make an appropriate 
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decision. In this sense, the classical ranking and selection procedures may seem conserva- 

tive if the prior information has not been considered. If the information at hand can be 

quantified into a single prior distribution, one would like to apply a Bayes procedure since 

it achieves the minimum of Bayes risks among a class of decision procedures. In his recent 

book, Berger (1985) discusses several approaches to select a prior distribution based on 

the mformation at hand. Some contributions to multiple decision problems using Bayesian 

approach have been made by Bickel and Yahav (1977), Chernoff and Yahav (1977), Deely 

and Gupta (1968), Goel and Rubin (1977), Gupta and Hsiao (1981), Gupta and Miescke 

(1984), Gupta and Yang (1985), Berger and Deely (1986), Guttman and Tiao (1964), Mi- 

escke (1979) and Roth (1978), among others. Readers are referred to Box and Tiao (1973) 

and Berger (1985) for general Bayesian inference in statistical analysis. 

How^ever, it is usually difficult, perhaps impossible, to quantify the prior information 

through a single prior. Therefore, it is suggested, (for example, see Robbins (1964)), that 

the prior information is quantified through a class T of subjectively plausible priors. Blum 

and Rosenblatt (1967) and Berger and Berliner (1986) have used this idea in statistical 

inference. One of the approaches, through the consideration of a class T of subjectively 

plausible priors, is the so-called T-minimax approach. One would like to apply the T- 

minimax procedure which minimizes the supremum of the Bayes risk over the class T of 

priors. Some contributions to multiple decision problems using this criterion have been 

made by Gupta and Hsiao (1981), Gupta and Huang (1977), Gupta and Kim (1980), Huang 

and Tseng (1983), Miescke (1981) and Randies and Hollander (1971). Also, Deely (1965) 

studied some selection problems through empirical Bayes approach assuming that the prior 

distribution belongs to a class of distributions with some unknown hyperparameters. 
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The empirical Bayes approach in statistical decision theory is appropriate when one 

is confronted repeatedly and independently with the same decision problem. In such in- 

stances, it is reasonable to formulate the component problem with respect to an unknown 

(or partially known) prior distribution on the parameter space. One then uses the accumu- 

lated observations to improve the decision procedure at each stage. This approach is due 

to Robbins (1956, 1964, 1983). Empirical Bayes procedures have been derived for multiple 

decision problems by Deely (1965) for selecting a subset containing the best population. 

Van Ryzin (1970), Huang (1975), Van Ryzin and Susarla (1977) also studied other multi- 

ple decision problems by using the empirical Bayes approach. Recently, Gupta and Hsiao 

(1983) and Gupta and Leu (1983) have studied empirical Bayes procedures for selecting 

good populations with respect to a standard or a control. Gupta and Liang (1984, 1986) 

have studied empirical Bayes procedures for the problem of selecting the best population 

or selecting populations better than a standard or a control with underlying populations 

being binomially distributed. Many such empirical Bayes procedures have been shown 

asymptotically optimal in the sense that the risk for the n-th decision problem converges 

to the optimal Bayes risk which would have been obtained if the prior distribution was 

fully known and the Bayes procedure with respect to this prior distribution was used. 

In the present paper, we describe selection and ranking procedures using prior dis- 

tributions or using the information contained in the past data. Section 2 of this paper 

deals with the problem of selecting the best population through Bayesian approach. An 

essentially complete class is obtained for a class of reasonable loss functions. We also 

discuss Bayes-P* selection procedures which are better than the classical subset selection 

procedures in terms of the size of selected subset. In Section 3, we first set up a general 
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formulation of empirical Bayes framework for selection and ranking problems. Several em- 

pirical Bayes frameworks are discussed based on the underlying statistical models. Two 

selection problems dealing with binomial and uniform populations are discussed in detail. 

2. Bayesian Approach 

2.1. Notations and Form.ulation of the Selection Problem 

Let OieQ C R denote the unknown characteristic of interest associated with popula- 

tion TTt, i = 1,... ,k. Let Xi,..., Xjt be random variables representing the k populations 

■Ki,i = 1,..., A;, respectively, with X,- having the probability density function (or probabil- 

ity frequency function in discrete case) /,(x|0i). In many cases, X,- is a sufficient statistic 

for ei. It is assumed that given 6 = {Oi,... ,0k), X = (Xj,..., Xjt) have a joint probability 

k 
density function f{x\e) = H fi{xi\6i), where x= {xi,...,Xk). Let ^[i] < 0[2] < ■■■ < ^[fc] 

t=i 

denote the ordered values of ^,'s and let TTJ,] denote the unknown population associated 

with 6[i]. The population ^rj^j will be called the best population. If there are more than 

one population satisfying this condition, we arbitrarily tag one of them and call it the best 

one. Also, we let Cl = {$\OieQ,i = 1,...,A;} denote the parameter space; also denote by 

G(-) a prior distribution on 6 over n. 

Let A be the action space consisting of all the 2^ — 1 nonempty subset of the set 

{1,..., k}. When action S is taken, we mean that population Zi is included in the selected 

subset if ieS. For each 6eU and SeA, let L[B,S) denote the loss incurred when 6 is the 

true state of nature and the action S is taken. A decision procedure d is defined to be a 

mapping from X x A into [0,1], where X is the sample space of X = (Xi,..., X^). That 
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is, for xeX and SeA, d{x, S) is the probability of taking action S when X = x is observed. 

Let D* be the set of all decision procedures d{x,S). 

For each deD*, let B{d, G) denote the associated Bayes risk. That is, 

(2.1) B{d,G) = I    I y^d[x,S)L{6,S)f{x\0)dxdG[6). 
\ •'^■'^ SeA 

Then, B{G) =  inf B{d,G) is the minimum Bayes risk. 

An optimal decision procedure, denoted by da, is obtained if da has the property that 

(2.2) B{dG,G)=B{G). 

Such a procedure is called Bayes with respect to G. Under some regularity conditions, we 

can write (2.1) as      .    , '      '   ■      - ■ 

(2.3) B{d,G)^ f y2d{x,S) f L{0,S)f{x\0)dG{0)dx. 

Now Let 

(2-4) rG{x,S)= f L{0_,S)f{x\0)dG[0), 

and 

(2.5) AG{x) = {SeA\rG{x,S) = mm rG{x,S')} 
S'eA 

Then, a sufficient condition for (2.2) is that dc satisfies 

(2.6) Y.    ^G(?,5) = 1. 
ScAaiX) 



2.2. An Essentially Complete Class of Decision Procedures 

In this subsection, we consider a class of loss functions possessing the following prop- 

erties: 

Let H denote the group of all permutations of the components of a A;-component 

vector. 

Definition 2.1:   A loss function L has property T if 

{^) L{e,S)^L{h0, hS) for all Ben, SeAaindheH,3.nd 

(b) L{0,S') < L{e,S) if the following holds for each pair {i,j) with Oi < 6j :    ieSJ^S 

and 5'= (5 - (0) U {i}. 

The property (a) assures the invariance under permutation and property (b) assures 

the monotonicity of the loss function. In many situations, a loss function satisfying these 

assumptions seems quite natural. Some examples of such a loss function are: 

(2.7a) L{9,S) = a\S\ + [0[jtj - 63] (Goel and Rubin (1977)); 

(2.7b) L{e,S) = ^ J2{eik] - e^) + bl^e^^^es} (Bickel and Yahav (1977)); 

(2.7c) L{6, S) = c(^[fc] -es)-rLY: 6j (Chernoff and Yahav (1977)); 

(2.7d) L{e,S) = \S\ + el{g^^^^es) (Gupta and Hsu (1978)); 

(2.7e) L{e,S) = Y: a{\S\){0ik] - 6j) (Deely and Gupta (1968)); 
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where, \S\ denotes the cardinaUty of the subset 5,^5 = max^y,a, 6,c and e are positive 

constants, a(-) is a positive function on the set {1,2,..., fc} and I A denotes the indicator 

function of set A. • 

Note that different loss functions have different interpretations. For further discussion, 

see Gupta and Hsu (1978). 

We now let X(i) < X(2) < ■■• < X(fc) denote the ordered observations. Here the (i) 

can be viewed as the (unknown) index of the population associated with the observation 

X(i). For each j = 1,... ,k, let Sj = {(fc),... ,{k — j + 1)}, and the remaining subsets Sj 

be associated one-to-one with i = fc-|-l,... ,2*^ - 1, arbitrarily. Also, let Am = {-SeylHSl = 

k 
m},m = l,...,k,^.ndDl = {deD*\ J2 d{x,Sj) = 1 for a,\\ xeX}. 

Theorem 2.1: Suppose that /i(3:,|^,) = f{xi\0i), i ^ l,...,k, where the pdf f{x\e] 

possesses the monotone likelihood ratio (MLR) property, and the prior distribution G is 

symmetric on U. Then, 

(a) for each m = 1,...,/;;, rdx, S^) < rc{x, S) ioi all SeAk-m+i, xeZ, and 

(b) Dl is an essentially complete class in D*\ 

provided that the loss function has property T. 

Proof: The proof for part (a) is analogous to that of Theorem 3.3 of Gupta and 

Yang (1985). For part (b), let d be any decision procedure in D*. Consider the decision 

procedure d* defined as:  for xeX, 

d*{x,Sm)=      J^      d(i,5), m = 1,...,A;; 



and 

d*{x,S)=0,   S ^ Sm, rn = l,...,k. 

Then, d*€D1. Also, by part (a) and (2.3), one can see that 

B[d\G)<B{d,G). 

Hence, the proof of part (b) is completed. 

Let A'Q{X] = {Sj\l < j < k, rG{x,Sj) =   min rG{x,Si)}. Then, under the condition 
i<t<fc 

of Theorem 2.1, any Bayes procedure da satisfies       X)      dG{x,Sj) = 1   for xeX. 
S,eA'^(X) 

Goel and Rubin (1977) choose the loss function (2.7a) and study the behavior of 

the corresponding Bayes procedure in great detail. Bickel and Yahav (1977) assume that 

^[1]) • • • 5 ^[k] ^■re known and consider the loss function (2.7b). They obtain the best invariant 

procedure for the normal pdf and then depart from the decision theoretic approach to 

simplifying this procedure as fc —>• oo. Chernoff and Yahav (1977) consider the loss function 

(2.7c) and compare the performance of the Bayes procedure with other procedures in a 

"normal model" on the basis of Monte Carlo results. 

2.3. Bayes Procedures wrt Additive Loss Functions 

Deely and Gupta (1968) consider the loss function L{0,S) corresponding to the choice 

of S given by 

(2.8) mS) = Y,<^sA&[k]-Oj)- 

Some examples of such a loss function are: 
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«* 

(2.8a) L{9, S) = Y^ [Oik] - 9j), sum of losses; 
jeS 

(2.8b) L{e, 5) = j^ E {^[k] - Oj), average loss; 
jeS 

(2.8c) L(^, 5) = (fc + 1 - |5|) E (^[fc] - ^i)- 
jeS 

Note that all these three loss functions have the property T. 

I   r 
Deely and Gupta (1968) proved that when asj — a> OfoT all SeA and jeS, then the 

Bayes procedure always selects exactly one population. Miescke (1979) slightly generalized 

the result of Deely and Gupta (1968). He considered the loss function 

(2.9) L(^,.S)-J^a(|5|)£.(^), 

where «(•) is nonnegative function on the set {1,... ,k}. We cite his result as follows: 

Theorem 2.2. Let ma(m) > Q;(l),m = 1,2,..., A;, ff the £i's are nonnegative, then 

there exists a Bayes procedure which always selects exactly one population. 

Theorem 2.2 does not hold if the nonnegativity of £,• for all t = 1,..., fc is not satisfied. 

For example, consider the loss function ■ -      - 

(2.10) " L{e,s) = Y,{^[k\-Oi-^), 

where e > 0 is a given constant. This loss function can be used for the problem of selecting 

populations close to the best. With this loss function, it is possible to select more than 

one population. 

9 
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^«> *■■-*•"■-*"    ^^      .      ' *-- >.,>   .,-*rf'V:3^ 

2.4. Bayes-P* Selection Procedures • 

In this section, we continue with the general setup of Section 2.1. 

A selection procedure V" = (V'l, • • •, V'Jt) is defined to be a mapping from X to [0, l]'', 

where ^,(x) : X ^ [0, l] is the probability that TT,- is included in the selected subset when 

X — X is observed. A selection procedure tp is called nonrandomized if all Vi's are 0 or 

1; otherwise, it is a randomized procedure. A correct selection (CS) is defined to be the 

selection of any subset that includes the best population. 

Let d by any decision procedure considered in earlier sections. A selection procedure 

0'^ = (V'l, • • ■, ipk) associated with d can be obtained by letting      > 

(2.11) xPf{x) = Y^d{x,S), 
S3i 

where the summation being over all the subsets containing t. 

In the decision-theoretic approach, a Bayes decision (selection) procedure always pro- 

vides a decision with minimum risk under a certain loss. However, since, in practice, one 

always has the difficulty in figuring out what the loss may be and the Bayesian result is 

quite sensitive to the loss used, in this sense, a Bayes procedure does not mean that its 

quality is good enough to pass a certain level. For guaranteeing the quality of decision 

(selection) procedures one would like to have a "quality control" about the class of all 

possible decision (selection) procedures. That is, any procedure with lower quality will be 

removed, even though it might be the cheapest one under some losses. Analogous to clas- 

sical subset selection approach, Gupta and Yang (1985) set up a control condition using 

the Bayesian approach. 

10 
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Let 

(2.12) pi{x) = P{ni is the best \X = x) = P{ei is the largest \X = x) 

be the posterior probability that population TT,- is the best population when X = x is 

observed. Then, for selection procedure V*, the posterior probability of a correct selection 

given X = x'ls 

k 

(2.13) p^cS\^,X = x) = T^i{x)pi{x). 
^—' (*>     ■ ■ 

t=i 

Definition 2.2. Given a number P*, A;"^ < P* < 1, and a prior G on H, we say a selection 

procedure 0 satisfies the PP*-condition (posterior P*-condition) if 

(a) t/»t(x) = 1   at least for some i, 1 <i <k, and 

(b) P(C5|t/>,X = x) > P* for all xeX. 

k 
Note that ^ Pt(?) = 1 for all xejf; hence this kind of selection procedures always 

t=i 

exist. We let C = C{P*){C* = C*{P*)) be the class of all nonrandomized (randomized) 

selection procedures satisfying the PP*-condition. 

Let P[i](x) < ... < P[k]{^) be the ordered Pi(x)'s and let 7r(,) be the population 

associated with p[i](x),i = 1,...,A;. Then a selection procedure tp can be completely 

specified by {V'(i),... ,tA(fc)}, where 

(2.14) ^(i)(?) = -P(7r(t) is selected |0,X = x},i = 1,... ,k. 

Gupta and Yang (1985) proposed two selection procedures; one is nonrandomized, say 

■0*^ and the other is randomized, say ^"^ . They are defined as below. _   - 
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Definition 2.3.    Given a number P*,k-^  < P*  <  1, and an observation X = x, let 
k 

j = max{m\ J2 P[.](?) > P*}. 

(a) The nonrandomized selection procedure ^^ is defined by {rp9[^,..., 0[^J, where 

^ ^ ^0    otherwise. 

(b) The randomized selection procedure ^J^' is defined by {^P^ .. •, V-m)' where 

Wk){x) = 1, and for 1 < I < A: - 1, 

(1    ifi>j; 
V'S(x)=<^ A    ifi = y;       i 

lo    ift<j; 

the constant A is determined so that 

^P[yi(5)+    Yl   P[m](5)=P*. 
m=j + l 

It is clear that V'^eC and V-^'eC*. In the following, some optimalities of these two 

selection procedures are investigated. 

Definition 2.4. A selection procedure tjj is called ordered if for every xeX,Xi < Xj implies 

V'.(?) < 0y(x). It is called monotone or just if for every i = l,...,k, and x, ytX, ^i[x) < 

V'i(y) whenever x,- < y,-, xy > y- for any j ^ i. 

Some sufficient condition for rp^{r/j^') to be ordered and monotone are given below: 

Theorem 2.3. (Gupta and Yang (1985)). Let G{e\x) be the posterior cdf of 0, given 

X = x. Let G{9\x) be absolutely continuous and have the generalized stochastic increasing 

property, that is: 
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k 
(1) G{e\x)= U Gi{ei\x),Gi{-\x) :^  posterior cdf of ^i. 

t=i 

(2) Gi{t\x) > Gj{t\x) for any t, whenever i,- < Xj. 

Then, both ip^ and ^'^' are ordered and monotone. 

Gupta and Yang (1985) also investigated some optimal behavior of these two proce- 

dures through the decision-theoretic approach over a class of loss functions. 

Definition 2.5.   A loss function L has property T' if 

(a)  L has property T, and 

'.  1 
(b) L{9,s) <L{e,s') if^c^'. ; 

.« 

Theorem 2,4. (Gupta and Yang (1985)). Under the assumption of Theorem 2.3, 

the selection procedure V'^(V'^*) is Bayes in C{C*) provided that the loss function has 

property r'. > 

Gupta and Yang (1985) investigated the computation of p,(x) for the "normal model" 

by using normal and non-informative priors. Berger and Deely (1986) consider another 

selection problem, and give a more detailed discussion about the computation of pi{x) 

under several different priors. 

.=, 3.   Empirical Bayes Approach 

In this section, we continue with the general setup of Section 2. However, we assume 

only the existence of prior distribution G on fi, and the form of G is unknown or partially 

known. In Section 3.1, we consider decision procedures for general loss functions. In 

Sections 3.2 and 3.3, only selection procedures are concerned. 
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3.1.   Formulation and Summary of the Empirical Bayes Selection Problems 

For each t,i = 1,... ,k,let Xij denote the random observation from TT,- at stage j. Let 

e.y denote the random characteristic of TT,- at stage j. Conditional on 0.v = 0„ X^A0- 

has pdf (or pf in discrete case) /,(a:|^,y). Let Xy = (Xiy,..., X,y) and ?, = [9,^,..., 0,-). 

Suppose that independent observations Xi,...,X„ are available and ^y,l < i < n, have 

the same distribution G for all j, though not observable. We also let X = (Xi,... ,Xfc) 

denote the present random observation. 

Consider an empirical Bayes decision procedure d^. Let B{dn,G) be the Bayes risk 

associated with the decision procedure d„. Then 

Bidn,G)=fEjY:d^{{x;Xu...,Xr.),S)L{e,S)f{x\e)dxdG{e), 

where rf„((5;Xi,...,X„),5)(=d„(5,5)) is the 

probability of selecting the subset 5 when (x; X„ ..., X„) is observed, and the expectation 

E is taken with respect to (Xi,..., X„). Note that 5(rf„, G) -B(G) > 0, since B{G) is the 

minimum Bayes risk. This nonnegative difference is always used as a measure of optimality 

of the decision procedure d„. 

Definition 3.1.   A sequence of decision procedures {d,}~ , is said to be asymptotically 

optimal relative to the prior distribution G if J5(rf„, G) -. J9(G) as n -^ oo. 

Let Z,(^) = max|L(^,5)| and assume that f L{e)dG{e) < oo. Following Robbins 

(1964), one can see that a sufficient condition for the sequence {rf„} to be asymptotically 

optimal is that d^x, S) -^ d^x, S) for all xeX and SeA, where "-^" means convergence 

in probability (with respect to (Xi,..., X„)). 
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Let Gn be a distribution function on the parameter space fl. Suppose G„ is a function 

of (Xi,..., Xn) such that P{ lim Gn{0) = G{6) for every continuous point ^ of G} = 1, 

where the probability is with respect to (Xi,...,X„). Let the loss function L{9,S) and 

the density f{x\0) be such that L{6, S)f{x\d) is bounded and continuous in 6 for every SeA. 

Then {dc^} is asymptotically optimal with respect to G if /^ L{9)dG{9) < oo, where dc^ 

is a Bayes procedure with respect to the distribution G„. 

To find Gn, we may assume G to be a member of some parametric family T with 

unknown hyperparameters, say A = (Ai,..., Afc). Suppose now an estimator A„ = 

(Ai„,. ..,Afc„) depending on the previous observations (Xi,...,X„) can be found such 

that Gn converges to G with probability one. Note that G„ is also a member in T. 

We then follow the typically Bayesian analysis and derive the Bayes procedure dc^ with 

respect to the estimated prior distribution G„. Then, according to the result of Deely 

(1965), the sequence of empirical Bayes procedures {dc^} is asymptotically optimal. This 

approach is referred as parametric empirical Bayes. Deely (1965) has derived the empirical 

Bayes procedures through the parametric empirical Bayes approach in several special cases 

among which are (a) normal-normal, (b) normal- uniform, (c) binomial-beta, and (d) 

Poisson-gamma. 

In another approach, called nonparametric empirical Bayes, one just assumes that 

6j,j = 1,2,..., are independently and identically distributed; however, the form of the 

prior distribution G on H is completely unknown. In this situation, one may either estimate 

the prior distribution and then proceed to a typical Bayesian analysis or represent the Bayes 

procedure in terms of the unknown prior and then use the data to estimate the Bayes 
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procedure directly. The estimation of the prior distribution through the nonparametric 

empirical Bayes approach has been studied (see Simar (1976) for Poisson distribution and 

Jewell (1982) for exponential distribution). For the second approach, see Van Ryzin (1970), 

Van Ryzin and Susarla (1977), Gupta an Hsiao (1983), Gupta and Leu (1983), and Gupta 

and Liang (1984, 1986), among others. 

In the following sections, we consider some selection problems with underlying popu- 

lations having binomial or uniform distributions. We will use the approach of first looking 

at the form of the Bayes procedure and then estimating the Bayes procedure directly. 

3.2.   Empirical Bayes Procedures Related to Binomial Populations 

In this section, two selection problems related to binomial populations are discussed: 

selecting the best among k binomial populations and selecting populations better than 

a standard or a control. For each i, the observations X,- can be viewed as the number 

of successes among N independent trials taken from TT,-, and the parameter 6i as the 

probability of a success for each trial in TT,-. Then X,|5,- has probability function /t(a;|^t) = 

(x)^f(l - 0i)^~'',x = 0,1,...,AT.   We let Gi{-) denote the prior distribution of 9i and 

k 
assume that G{e) = H G,(^,). 

1=1 
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3.2.1.   Selecting the Best Binomial Population 

Gupta and Liang (1986) considered the loss function 

for the problem of selecting the largest binomial parameter O^k] among k binomial popu- 

lations. 

1 1 

Let fi[x)  =  J fi{x\e)dGi{e),Wi{x)  = fefi{x\e)dGi{e) and <pi{x)  = Wi{x)/ax). 
0 0 

Then, from (3.1), following straightforward computation, a randomized Bayes selection 

procedure, say V'^ = (^f,..., 0jf), is given below: ' 

(3.2) ^B(^)^ f|5(x)|-i    ■^iieS{x); 
(0 otherwise; 

where 

Here, V'f (?) is the probability of selecting TT,- as the best population given X = x. 

Note that (pi{x) is the Bayes estimator of the parameter Oi under the squared error 

loss given Xi = x. One can see that (pi{x) is increasing in x for i = 1,..., fc and hence V^ 

is a monotone selection procedure. 

A.   Formulation of the Empirical Bayes Framework 

Due to the surprising quirk that ^.(i) can not be consistently estimated in the usual 

empirical Bayes sense (see Robbins (1964) and Samuel (1963)), an idea of Robbins in 

setting up the empirical Bayes framework for binomial populations is used below. 
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For each i,i = l,...,k, at stage j, consider N + 1 independent trials from iTi. Let 

Xij and Yij, respectively, stand for the number of successes in the first N trials and the 

last trial. Let Zj = ((X.y.y.y),..., (Xjky,Y';ty)) denote the observations at the jth stage, 

j = 1,... ,n. We also let Xn+i = X — (Xi,..., Xk) denote the present observations. 

By the monotonicity of the estimators (p,(a;),l < i< fc, in terms of Bayes risks, one can f 

see that all monotone procedures form an essentially complete class in the set of all selection 

procedures. In view of this fact, it is reasonable to require that the appropriate empirical 

Bayes procedures possess the above mentioned monotone property. For this purpose, we 

first need to have some monotone empirical Bayes estimators for (pi{x), 1 < i < k. Gupta 

and Liang (1986), by using isotonic regression method, proposed two monotone empirical 

Bayes estimators for ^,(x). 

B.   The Proposed Monotone Empirical Bayes Selection Procedures 

For each x = 0,1,..., iV, and n = 1,2,..., define 

(3-4) Mx) = -f2l{.}{Xi,) + n-'; 
n 

y=i 

(3-5) ■■ WUx)^lf;^Y,jI[,}{X,j) + n-'; 

Also, let Vij = Xij + Yij,j =1,2,...     Define 

(3.6) ^^•4-) = {[;^7^^E/{x+i}(V^i^^^^ 
'^ ' j=i y=i 

where a Ab = min{a,6}. Let 

(3.7) cpi,{x)=Wir.{x)/fi4x); 
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(3.8) (Pin{x)  = Win{x)/fin{x); 

and for each 0 < x < N, define 

t 

(3.9) 'Pini^) =  max    mm {V <Pin{y)/{t -s + 1)}; 
0<s<i s<t<N   ^—• 

y=B 

(3.10) ^.*n(^) =   max    min {^ <Pin{y)/{t -s + 1)}. 
0<a<i a<t<N   ■^—' 

y=a 

By (3.9) and (3.10), one can see that both fi^i^) ^^^ ^ln(^) ^^^ increasing in x. 

Gupta and Liang (1986) proposed V^,*„(x) ( or ^,*„(a;)) as an estimator of (Pi{x). They 

also proposed two empirical Bayes selection procedures, say ^* = {''Pin^ ■ ■ ■ ■>'^kn)i ^^'^ 

ipn — (V'lu) • • • j V'fen)j which are given below, respectively: 

(3.11) 

where 

(3.12) 

and 

(3.13) 

where 

(3.14) 

^*"^~^      \0 otherwise, 

Snii) = {»>.-„(a;,) =  m^ ip*^{xj)}; 
l<]<k     ^ 

^. .^(^)^ ||5„(x)|-i     ifieS„(x); 
1^ 0 otherwise; 

5„(x) = {#,V(^i) =  max (p*„(xj)} 
l<7<fc 

Due to the increasing property of the estimators <Pi„(2;),^i„(x),  1 < i < A;, one can see 

that '>l)*^ and V'n are both monotone selection procedures. 
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Asymptotic Optimality of {V>*} and {V'„}- 

Without ambiguity, we still use B{ip,G) to denote the Bayes risk associated with the 

selection procedure tjj when G is the true prior distribution. 

Gupta and Liang (1986) proved that the two sequences of selection procedures {V'Ji} 

and {ipn} have the following asymptotically optimal property: 

B{f^,G)- B{rP^,G) <0{exp{-cin)), 

and 

B{^_^,G)-B{rP^,G)<0{exp{-C2n)), 

for some positive constants cj and C2. . 

3.2.2.   Selecting Populations Better Than A Control 

Let ^0^(0,1) denote a control parameter. Population TT, is said to be good if 0, > ^o 

and bad if 0,- < 6Q. Gupta and Liang (1984) considered the loss function 

(3.15) L{d,S) = ^{6o - 0.)/(oA)(^.) + E(^' - W(e,,i){0i), 
ieS i^S 

for the problem of selecting (excluding) all good (bad) populations. For the loss function 

(3.15), the first summation is the loss due to selecting some bad populations, and the 

second summation is the loss due to not selecting some good populations. The value of the 

control parameter ^o is either known or unknown. When ^o is unknown, a sample from the 

control population, say TTQ, is needed. To be consistent with the notation used in earlier 

sections, we assume ^o is known. We note that Gupta and Liang (1984) have studied the 

case when ^o is unknown. 
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-f^'-r*^.-^^.' ■-./■■'*>'-'^ :"S . 

For the loss function (3.15), a nonrandomized Bayes selection procedure 

g^ = (af,..., ojf) is given by 

(3.16) a?(x) = l^    if <Pi(^.) > ^o; 
^       ' *''-''      \0    otherwise, 

where af [x] is the probability of selecting TTJ as a good population given X — x. 

Note that g^ is also a monotone selection procedure. Hence, based on the estimators 

'P*xn{^) ^nd ^t*n(^)' two intuitive empirical Bayes procedures, say g* = (a^^,..., a^^) and 

«n = (ain, ■••, ttfcn) can be obtained where 

(3.17) <n{^) = [i     '\'f^r.{.^:'^^^'-^ 
^       ' '"■^~'      \0    otherwise; 

and 

(3.18) &in(?) = (^    \i<pU^i)>0o; 
*-0    otherwise. 

Similarly, one can show that these two sequences of selection procedures {a*} and 

{g„} have the following asymptotically optimal property: 

jB(g;,G) - 5(g^,G) < 0(exp(-C3n)), 

and 

B{an,G)-B{a^,G) <0{exp{-C4n)) 

for some positive constants C3 and C4. 
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3.3.   Empirical Bayes Procedures Related to Uniform Populations 

In this section, we assume that the random variables X,-,  1 < i < k, have uniform 

distributions U{O,0i),0i > 0 and unknown. The parameter space is fi = {^1^, > 0, 1 < t < 

k 
k}. It is also assumed that the prior distribution G on fi has the form of G{e) = J] Gii^i), 

where Gt(-) is a distribution on (0, oo), i = 1,..., it. 

Let ^0 > 0 be a known control parameter.   Gupta and Hsiao (1983) considered the 

loss function - 

(3.19) L{e,S) = L, Y^ie, - ^o)/(.o,oo)(^.) + L, J](^o - ^i)/(o,.o)(^.), 

where Li, i = 1,2, are positive and known, for the problem of selecting populations better 

than a stajidard ^o- 

Let mi[x) be the marginal pdf of X,- and M,(x) be the marginal distribution of X,-. 

Then, we have 

(3.20) 

and 

/•oo ^ 

m.(x) =  /      -dGi{e)   for x > 0, 

j     ^dGi{e)dt=^xmi{x) + Gi{x). 

Note that the marginal pdf m,(a;) is continuous and decreasing in x. 

By direct computation, a Bayes procedure V-^ = (0f,... ,^f) for this selection prob- 

lem is given by 

(3.22) ^^(x) = I ^    ^^ (^'' - ^°) °^ (^* < ^0 ^^^ ^icixi) > 0); 
'    '        \ 0    otherwise; 
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where - > 

(3.23) Aicixi) = L2mi{xi]{xi - 0o) + L2[Mi{9o) - M.(xi)] + ^i[l - Mi(0o)]. 

By the decreasing property of the pdfs m,(x), 1 < i < A;, one can see that t^ic{x), 1 < 

i < k, are increasing in x for x < OQ; and hence, the Bayes procedure xj}^ has the monotone 

property. 

^   ■    ■ 

I ■ 

Empirical Bayes Procedures 

To form an empirical Bayes procedure, we first need to have some estim.ators, say 

rriinix) and Mt„(x), for m,(x) and M,(x), respectively. Due to the decreasing property 

of ?7^,•(x), we require that the estimators min{x),n = 1,2,..., possess the same property. 

Once an estimator rriin is obtained, we let • 

(3.24) Min{x) = I    min{y)dy, 
Jo 

and 

(3.25) A,„(x) = L2min{x){x - 6o) + L2[Mi„(0o) - Mi„(x)] + Li[l - Mi„(0o)].    ,, 

Then, an empirical Bayes procedure i/)„ = (r/'in,... ,4>kn) caJi be given as follows: 

(3.26) rpiJx) = l^    if (xi > ^o) or (x,-< 00 and A,„(x.) >0); 
'" ~        lo    otherwise. 

This empirical Bayes procedure rpn is a monotone procedure if min{x), 1 < i < fc, are 

decreasing in x. We use the method of Grenander (1956) to obtain such an estimator 

having the decreeising property. 
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Let -^f(i) < -^i(2) ^ ■•• ^ "^iCn) ^^ *^^ ordered observations of the first n observations 

taken from TT,. Let Fin be the empirical distribution based on X,i,... ,X,„. For each 

j, 1 < j < n, let 

(3.27) /?,,=   min max ^''^^^'^^^^ " ^^"^^^-)\ 

when Xt'.Q, = 0, and define 

(0       for X < 0; 
Ay    forX-(._,)<x<X;',..; 
0       forx>x/(„). 

From (3.27) and (3.28), one can see that the estimator min{x) is decreasing in x. Thus, 

the empirical Bayes procedures tpn defined by (3.24 ~ 3.28) is a monotone procedure. It is 

known that both estimators Min{x) and m,„(x) have strong consistency property. Hence, 

A,„(x) is a strongly consistent estimator of Aioix). Then by Theorem 2.1 of Gupta and 

Hsiao (1983), the sequence of empirical Bayes procedures {ipn} is asymptotically optimal 

provided J^ 0dGi[e) < oo for each i = l,...,k. 

3.4.   Remark on the Monotonicity of Empirical Bayes Selection Procedures 

The monotonicity of selection procedures is an important property in many selection 

problems. Under some regularity conditions, Miescke (1979) showed that every Bayes 

procedure is monotone. Hence, the class of all monotone selection procedures form an 

essentially complete class among the class of all selection procedures. In other words, a 

non-monotone selection procedure is always inadmissible in terms of the Bayes risk. 

Generally, the monotonicity of a Bayes selection procedure is due to the monotonic- 

ity of the posterior expectation of loss functions (or functions related to loss functions). 
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Therefore, in the empirical Bayes selection problems, one of the most important things is 

to construct monotone estimators for each related monotone function. 

The techniques to construct monotone empirical Bayes estimators have been studied 

by van Houwelingen (1976, 1977) for continuous one-parameter exponential family and 

also for a class of discrete distributions with monotone likelihood ratio property. Stijnen 

(1982, 1985) and van Houwelingen and Stijnen (1983) have studied the same problem for 

the continuous one-parameter exponential family. Those techniques can (only) be applied 

to selection problems with underlying distributions being in the above mentioned family of 

distributions. Further studies are needed to investigate the asymptotic behavior for each 

related empirical Bayes selection procedure. The present authors are planning to do some 

work along these lines. 
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